Lenz' Law

Contest

South end of a magnet moving towards loop

North end of a magnet moving towards loop

Loop moving into a uniform magnetic field as shown.

Loop moving towards solenoid, where the solenoid's current enters through the bottom and exits through the top

Loop moving through a uniform magnetic field as shown.

Loop entering uniform magnetic field out of the page

Loop moving into a uniform magnetic field as shown.

Loop expanding in uniform magnetic field out of the page

Loop expanding in uniform magnetic field into the page

South end of a magnet moving away from loop

Loop shrinking in uniform magnetic field into the page

Loop speeding up through uniform magnetic field out of the page

Horizontal loop moving out of a uniform magnetic field as shown.

Loop oriented in horizontal plane is moving down and to the left as shown

Loop oriented in horizontal plane is moving vertically as shown

Loop shrinking in uniform magnetic field out of the page

North end of a magnet moving away from loop

Loop slowing down through uniform magnetic field into the page

Loop rotating about the dotted line shown, where rotation vector points to the left.

Consider a time interval from when the loop is horizontal to when it is vertical (vertical position is shown in diagram).

Loop oriented in horizontal plane is moving vertically as shown

Loop oriented in horizontal plane is moving down and to the right as shown

Loop oriented in the plane perpendicular to the page is moving vertically as shown

Express direction as if you were looking at loop from the right side of the page (see face drawn above)

Loop leaving uniform magnetic field out of the page

Loop moving through a uniform magnetic field as shown.

Loop is moving vertically as shown

Loop entering a uniform magnetic field out of the page

Loop leaving uniform magnetic field into the page

Loop entering uniform magnetic field into the page

Loop moving through uniform magnetic field into the page

Loop speeding up through uniform magnetic field into the page

Loop rotating about the dotted line shown, where rotation vector points to the left.

Consider a time interval from when the loop is vertical as shown to when it is horizontal.

Loop slowing down through uniform magnetic field out of the page

Loop rotating about the dotted line shown, where rotation vector points to the left.

Consider a time interval from when the loop is vertical as shown to when it is horizontal.

Loop rotating about the dotted line shown, where rotation vector points to the right.

Consider a time interval from when the loop is vertical as shown to when it is horizontal.

Loop rotating about the dotted line shown, where rotation vector points to the left.

Consider a time interval from when the loop is horizontal to when it is vertical as shown.

Loop oriented in the plane perpendicular to the page is moving vertically as shown

Express direction as if you were looking at loop from the right side of the page (see face drawn above)

Loop oriented in horizontal plane is moving vertically as shown

Loop rotating about the dotted line shown, where rotation vector points to the right.

Consider a time interval from when the loop is horizontal to when it is vertical as shown.

