
## General Biology II (101-HTK) Cellular Respiration & Fermentation Concepts and Learning Outcomes

| Торіс                                                                        | Concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biological redox<br>reactions                                                | <ol> <li>Cells use redox reactions to extract free energy<br/>from reduced chemical compounds (fuel) in<br/>nutrients.</li> <li>For most cells, the most common chemical fuel is<br/>glucose. The extraction of usable energy from<br/>glucose involves metabolic pathways that result<br/>in the oxidation of glucose and the capture of<br/>energy to make ATP.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>Name the type of chemical reaction cells use in order to extract<br/>free energy from chemical compounds in nutrients</li> <li>Identify the chemical fuel used by most cells and the type of<br/>reaction that results in the extraction of usable energy from<br/>this compound</li> </ol>                                                                                                                                                                                                                                     |
| Overview of<br>glucose<br>oxidation and<br>the release of<br>chemical energy | <ol> <li>Energy from glucose is harvested by 3 different metabolic pathways: glycolysis, cellular (aerobic) respiration (involving O<sub>2</sub>), and fermentation (in the absence of O<sub>2</sub>).</li> <li>In aerobic respiration, the highly reduced glucose is oxidized to form CO<sub>2</sub>, and O<sub>2</sub> is reduced to form H<sub>2</sub>O: C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>+6 O<sub>2</sub> → 6 CO<sub>2</sub> + 6 H<sub>2</sub>O + free energy</li> <li>In fermentation, glucose is partially oxidized, releasing less energy than aerobic respiration and resulting in the formation of ethanol or lactic acid.</li> <li>In biological redox reactions, electron carriers (eg, NAD) are involved in the transfer of e<sup>-</sup> from reduced compounds to the final e<sup>-</sup> acceptor.</li> </ol> | <ol> <li>Name the 3 different metabolic pathways by which free energy from glucose is captured to drive the endergonic formation of ATP</li> <li>Write a summary reaction for aerobic respiration that shows which reactant becomes oxidized and which becomes reduced</li> <li>Outline the main differences between aerobic respiration and fermentation in terms of O<sub>2</sub> requirement, end products, and level of free energy release</li> <li>Identify the role of electron carriers in biological redox reactions</li> </ol> |
| Glycolysis                                                                   | <ol> <li>Glycolysis occurs in the cytoplasm and can be<br/>divided into 2 stages: energy-investing reactions<br/>that use ATP and energy-harvesting reactions<br/>that produce ATP.</li> <li>In the energy-investing reactions of glycolysis, a</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Indicate where in the cell glycolysis occurs and write a<br/>summary reaction for each of the 2 stages of glycolysis</li> <li>Outline the changes in free energy that occurs in the glycolytic<br/>pathway</li> </ol>                                                                                                                                                                                                                                                                                                           |

|                              | <ul> <li>glucose molecule is split into 2 3-carbon<br/>compounds (glyceraldehydes-3-phosphate or<br/>G3P): glucose + 2 ATP → 2 G3P + 2 ADP + 2 Pi</li> <li>9. In the energy-harvesting reactions of glycolysis,<br/>G3P is oxidized into pyruvate: 2 G3P + 2 NAD<sup>+</sup> + 4<br/>ADP + 4 Pi → 2 pyruvate + 2 NADH + 2 H<sup>+</sup> + 4 ATP.</li> <li>10.ATP is formed by substrate-level<br/>phosphorylation, in which a phosphate group is<br/>transferred to ADP from a phosphorylated<br/>intermediate compound.</li> </ul>                                                                         |                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pyruvate<br>oxidation        | <ul> <li>11. Pyruvate oxidation occurs on the plasma membrane of prokaryotic cells and in the mitochondrial matrix of eukaryotic cells.</li> <li>12. In eukaryotic cells, pyruvate is actively transported from the cytoplasm into the mitochondrial matrix where it undergoes decarboxylation, oxidation, and conversion into acetyl-coenzyme A (acetyl-CoA) by the enzyme complex pyruvate dehydrogenase: 2 pyruvate + 2 NAD<sup>+</sup> + 2 COA → 2 acetyl-CoA + 2 NADH + 2 H<sup>+</sup> + 2 CO<sub>2</sub>.</li> </ul>                                                                                 | <ul> <li>9. Contrast the site of pyruvate oxidation in prokaryotic and eukaryotic cells</li> <li>10.Write a summary reaction of pyruvate oxidation and name the enzyme complex responsible for this reaction</li> <li>11.Outline the change in free energy that occurs during pyruvate oxidation</li> </ul>                                                                     |
| Citric acid cycle            | <ul> <li>13. The citric acid cycle, <i>aka</i> Krebs cycle or tricarboxylic acid (TCA) cycle occurs in the cytoplasm of prokaryotic cells and in the mitochondrial matrix of eukaryotic cells.</li> <li>14. The starting reaction of the citric acid cycle is the reaction of acetyl-CoA with oxaloacetate to yield citric acid (citrate).</li> <li>15. In a series of 8 enzyme-catalyzed reactions, citrate is oxidized, NAD and FAD (electron carriers) are reduced, and oxaloacetate is regenerated.</li> <li>16. The citric acid cycle completes the oxidation of glucose to CO<sub>2</sub>.</li> </ul> | <ul> <li>12.Contrast the site of the citric acid cycle in prokaryotic and eukaryotic cells</li> <li>13.Outline the process of the citric acid cycle by providing the starting point of the cycle and the intermediate reactions that lead to the regeneration of oxaloacetate</li> <li>14.Outline the change in free energy that occurs during the citric acid cycle</li> </ul> |
| Oxidative<br>phosphorylation | 17. Most ATP production occurs by oxidative phosphorylation, which occurs on the inner membrane of mitochondria (eukaryotic cells) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>15.Define chemiosmosis and explain how a gradient of protons is established across the inner mitochondrial membrane</li><li>16.Describe the process by which the proton motive force drives</li></ul>                                                                                                                                                                   |

|                                           | <ul> <li>the cytoplasmic side of the plasma membrane<br/>(prokaryotic cells).</li> <li>18.NADH and FADH2 are oxidized by the electron<br/>transport (respiratory) chain whereby O<sub>2</sub> is the<br/>final electron acceptor.</li> <li>19.In oxidative phosphorylation, electron transport<br/>is coupled to ATP synthesis by a process known<br/>as chemiosmosis.</li> </ul>     | <ul> <li>ATP synthesis in chemiosmosis</li> <li>17.Add up the energy captured (as ATP, NADH, and FADH2) in each of the stages of aerobic respiration of glucose(glycolysis, pyruvate oxidation, citric acid cycle, and respiratory chain)</li> <li>18.Explain why reoxidation of NADH is crucial for the continuation of the citric acid cycle</li> </ul> |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fermentation                              | <ul> <li>20.Fermentation enables cells to keep producing ATP by glycolysis in the absence of O<sub>2</sub> through the regeneration of NAD<sup>+</sup>.</li> <li>21.In fermentation, pyruvate is reduced to lactic acid (lactic acid fermentation; in muscles, yeast, and some bacteria) or alcohol and CO<sub>2</sub> (alcohol fermentation; in yeast and some bacteria).</li> </ul> | <ul> <li>19.Define fermentation and compare and contrast lactic acid and alcohol fermentation</li> <li>20.Compare and contrast aerobic respiration and fermentation; include the mechanisms of ATP formation, the final electron acceptors, the end products, and efficiency of transferring the energy in glucose to ATP</li> </ul>                      |
| Interrelation of<br>metabolic<br>pathways | <ul> <li>22.Cells use many kinds of organic molecules<br/>(carbohydrates, lipids, proteins, etc) as fuel for<br/>aerobic respiration.</li> <li>23.Cells use intermediate metabolites of aerobic<br/>respiration and ATP for biosynthesis of many<br/>kinds of organic molecules</li> </ul>                                                                                            | 21.Outline how metabolic and catabolic pathways are interrelated<br>and give examples of catabolic and anabolic interconversions                                                                                                                                                                                                                          |



| Metabolic   | 24.Cells regulate metabolic pathways (catabolism | 22.Describe the allosteric regulation of glycolysis and citric acid |
|-------------|--------------------------------------------------|---------------------------------------------------------------------|
| homeostasis | and anabolism) by feedback inhibition or         | cycle by giving the examples of phosphofructokinase and             |
|             | stimulation of key enzymes (allosteric           | isocitrate dehydrogenase                                            |
|             | regulation).                                     |                                                                     |