Class Activity

Amoeba cells (unicellular protest) move by forming pseudopodia (false legs), which is cellular crawling characterized by the formation of cellular extensions that pull the cell forward. *Ameba* cells constantly change shape as they move around by pseudopodia. *Amoeba* cells were treated with cytochalasin B, a drug that blocks the formation of microfilaments. Several treatments were tested to validate the effect of this drug. In each treatment, 500 random *Ameba* cells where examined following exposure to treatment, and their shape was noted. Cells that have lost their ability to move by pseudopodia look round under the microscope (see Figure 1 below). The results are shown in Table 2 below.

- 1. Draw a graph that best represents the results of this experiment.
- 2. Which statistical test would you use to determine whether there is significant difference between treatments?
- 3. What can you conclude about the role of the cytoskeleton in *Amoeba* movement by pseudopodia? Justify your answer. (*hint: which type of cytoskeletal proteins plays the most important role in the movement and shape determination in* Amoeba?)

Table 2. Effect of cytoskeletal proteins-disruptingdrugs and dinitrophenol on shape determination inAmoeba cells.

Treatment	Permanently rounded cells (%)
No drug	3
Cytochalasin B	95
Colchicine (inhibits microtubule formation)	4
Colchicine + cytochalasin B	94
Dinitrophenol (inhibits the formation of ATP)	45
Dinitrophenil + cytochalasin B	96

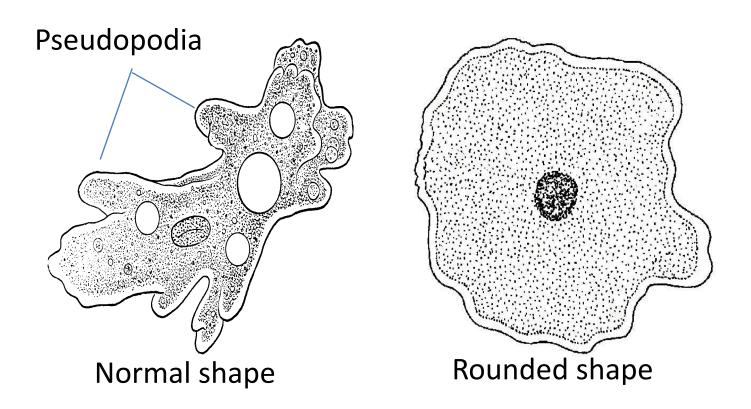
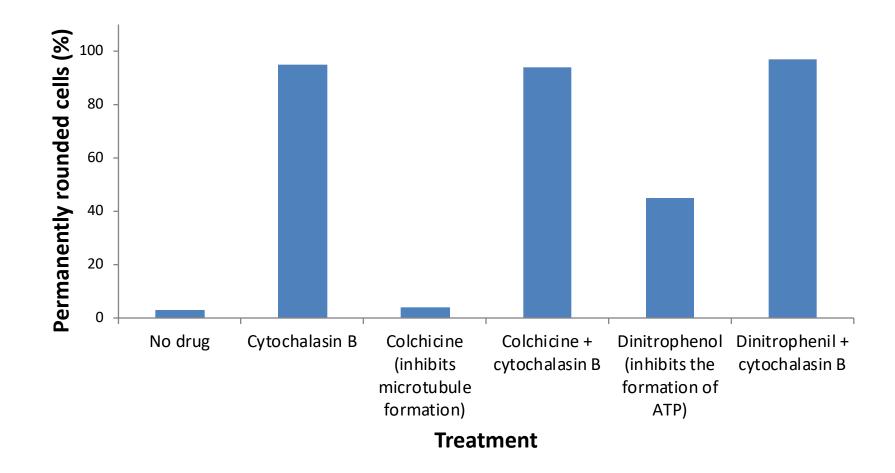



Figure 1. Shape difference between normal *Amoeba* cells moving by pseudopodia and cells that have lost this ability (rounded shape).

Effect of cytoskeletal protein-disrupting drugs and dinitrophenol on shape determination in *Amoeba* cells.

Chi-Square Analysis

	Observed	Expected
No drug	15	282
Cytochalasin B	475	282
Colchicine (inhibits microtubule formation)	20	282
Colchicine + cytochalasin B	470	282
Dinitrophenol (inhibits the formation of ATP)	225	282
Dinitrophenil + cytochalasin B	485	282

P= 9.582E-195

Answers to question 3

- Cytochalasin B: disrupt the formation of microfilaments. Microfilaments play a major role in determining the shape of *Amoeba* cells.
- No involvement of microtubules.
- ATP is needed for the function of microfilaments (high % of rounded cells treated with dinitrophenol).
- Since Amoeba cells move by changing shape (pseudopodia), microfilaments are also involved in movement of these cells.